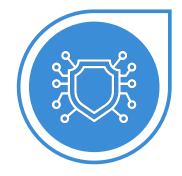


MACsec & Automotive Security

Dr. Lars Völker

CAST Online Workshop Automotive Security


Chapter 01. What is MACsec? Why do you want it?

- MACsec
- MKA
- MACsec vs IPsec, TLS/DTLS, SecOC

WHAT IS MACSEC?

- "Media Access Control (MAC) Security" is the standardized Security solution for the MAC layer by IEEE.
- "MAC security (MACsec) provides connectionless user data confidentiality, frame data integrity, and data origin authenticity", [1].
- MACsec is typically run in the "hop-by-hop" mode. This means that Ethernet frames are protected on wire but not inside an Ethernet Switch.
- MACsec requires Hardware support.
- Relevant Standards:
 - [1] "Media Access Control (MAC) Security", IEEE Std 802.1AE, 2018.

EXAMPLE PROTOCOL STACK.

	Diagnostics/ Flash Update	Control Communication		Network Management	Logging /	Debugging	Audio / Video	Time Sync		
Layer 5-7	DolP	SOME/IP	Signal PDUs	UDP-NM	ХСР	DLT	AVTP	gPTP		
	ISO 13400	e.g., AUTOSAR	PDU Transport							
Layer 4		TCP/IP Stack (UDP, TCP,) IETF RFCs								
Layer 3		= IEEE = 1722	IEEE 802.1AS							
Layer 2	VLANs, TSN features (e.g., shapers) [IEEE 802.1Q], time stamping for 802.1AS									
		Ethernet MAC [IEEE 802.1Q]								
Layer 1	100BASE-T IEEE 802.3				-	BASE-T1S (*) EEE 802.3cg		Multi-Gig E 802.3cy		
				Standardiz	ed I	n standardizati	ion			

EXAMPLE PROTOCOL STACK.

	Diagnostics/ Flash Update	Control Com	۸	Network Logging / Debugging Management		Debugging	Audio / Video	Time Sync	
Laver 5-7	DolP	SOME/IP	nly partially) Signal PDUs	UDP-NM	ХСР	DLT	AVTP	gPTP	
Layer 5-7	ISO 13400	e.g., AUTOSAR	PDU Transport						
	=		TLS / DTLS (only p	artially)			= =	=	
		TCP/IP Stack (UDP, TCP,)							
Layer 4		IETF RFCs							
	= IPsec (only partially) = IEEE =								
		1722	IEEE = 802.1AS						
Layer 3		1/22	0UZ.1A3						
IETF RFCs									
VLANs, TSN features (e.g., shapers) [IEEE 802.1Q], time stamping for 802.1AS									
Layer 2									
Layer 2 MACsec Ethernet MAC [IEEE 802.1Q]									
	100BASE-1	TX 100BASE-	-T1 1000BASE-T			OBASE-T1S	10		
Layer 1					-			Multi-Gig	
	IEEE 802.	3 IEEE 802	.3 IEEE 802.3	IEEE 802		EEE 802.3cg	IEEE	E 802.3cy	
			Security	Standardiz	ea l	n standardizati	on		

HOW DOES MACSEC WORK?

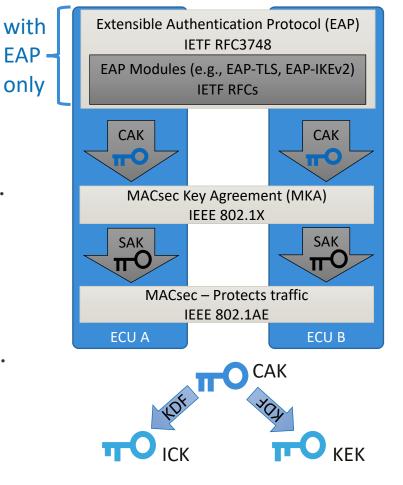
MACsec:

- "Authentication only" or "Encryption + Auth".
- Hop-by-hop mode for link-based protection.
- Security Tag including Integrity Check Value (ICV).
- Based on Secure Association Key (SAK).
- Typically: GCM-AES-128 or GCM-AES-256.
- Optional: Extended Packet Number (XPN).

But where to get the SAK from?

No.	. Time	Source	Destination	Protocol	Length	Info			
	1 0.000000	dc:a6:32:00:00:01	ff:ff:ff:ff:ff	ARP	76	Who has	169.254.95.161?		
>	Ethernet II 802.1AE Sec	, Src: dc:a6:32:00 curity tag	8 bits), 76 bytes (:00:01, Dst: ff:ff)			
	00 Short ler Packet nu System Id Port Ider Ethertype Padding:	umber: 119 dentifier: dc:a6:32 ntifier: 1 e: 0x0806	2:00:00:01						
>	> Address Resolution Protocol (ARP Probe)								
00 00	10 00 00 0 20 08 00 0 30 00 00 0	0 77 dc a6 32 00 6 04 00 01 dc a6 0 00 00 00 a9 fe	32 00 00 01 88 e5 2 00 01 00 01 08 06 0 32 00 00 01 00 00 0 5f al 00 00 e4 cf o a6 4b 8d b7	00 01 ··· 00 00 ··· 16 cb ···	2 w 2 2 2 N				

MACSEC KEY AGREEMENT.


MACsec Key Agreement (MKA):

- MKA allows to generate fresh SAKs for MACsec:
 - a) based on pre-shared Connectivity Association Key (CAK).
 - b) based on EAP generated CAK (e.g., based on EAP-TLS).
- Key Server is elected, and Key Server distributes encrypted SAK.

MKA generates additional keys out of CAK:

- ICV Key (ICK): MKA message integrity protection.
- Key Encryption Key (KEK): encryption of keys in MKA messages.

Recommendation: Use pre-shared CAKs for fastest startup.

MACSEC VS IPSEC, TLS, SECOC.

MACsec can cover more communication:

- More protocols.
- Multicast + Broadcast too!

MACsec is secure:

- MACsec, IPsec, TLS/DTLS can exchange fresh keys.
- SecOC typically does not a have strong key exchange.

MACsec is faster on startup (Key Exchange):

- MACsec one per Link
- IPsec one per ECU
- TLS/DTLS one per "application connection" * "ECU using it"

→ MACsec protects more, is secure, and faster.

Chapter 02. Is MACsec Ready for Automotive?

- Automotive MACsec.
- Challenge: Key Installation.
- Automotive MKA.
- Availability.

AUTOMOTIVE MACSEC.

Algorithm Choices:

- GCM-AES-128 or GCM-AES-256 depending on HW support.
- Typically, in "Authentication Only" for better testability.
- "Encryption + Authentication" requires more support:
 - Generate special CAKs for development vehicles.
 - Ensure that encrypted SAKs can be recorded by test equipment.

Rekeying:

- Goal is one key exchange per power cycle.
- Extended Packet Number (XPN) allows that.

CHALLENGE: KEY INSTALLATION.

Challenge: Key installation (in plant and service):

• How to install keys for MACsec, if communication is not present yet?

Option 1 – deactivate security for key installation.

- Simple solution but requires trust in service.
- OEM may not trust 3rd party service in all regions.

Option 2 – bypassing MACsec.

- Current MACsec chips allow selected traffic to bypass MACsec (e.g., MKA).
- Best practice: create bypass for key installation, diagnostics, and update.
 - Securing the unprotected communication is critical (typically, DoIP).

AUTOMOTIVE MKA.

Raspberry Pi: Regular MACsec Key Agreement (MKA) up to 8s (here 3s):

No.	Time	Time Delta	Source	Destination	Protocol	Length	Info	
1	0.000000000	0.00000000	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	EAPOL-MKA		98 Key Server	
2	0.986986779	0.986986779	ce:e9:55:df:c2:5e	01:80:c2:00:00:03	EAPOL-MKA		98 Key Server	
3	2.001422945	1.014436166	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	EAPOL-MKA		118 Key Server,	Potential Peer List
4	2.988365546	0.986942601	ce:e9:55:df:c2:5e	01:80:c2:00:00:03	EAPOL-MKA		150 Key Server,	Live Peer List, Distributed SAK
5	2.995237588	0.006872042	ce:e9:55:df:c2:5e	01:80:c2:00:00:03	EAPOL-MKA		194 Key Server,	Live Peer List, MACsec SAK Use, Distributed SAK
6	2.995736763	0.000499175	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	EAPOL-MKA		162 Live Peer Li	st, MACsec SAK Use
7	2.996580117	0.000843354	aa:ea:c4:e5:42:cc	01:80:c2:00:00:03	EAPOL-MKA		162 Live Peer Li	st, MACsec SAK Use

Raspberry Pi: Extensive tuning work <30ms but sometimes much longer:

No.	Time	Time Delta	Source	Destination	Protocol	Length	Info
	0.00000000	0.00000000	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	82	Key Server
	2 0.006542060	0.006542060	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	82	
	8 0.006907319	0.000365259	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	102	Key Server, Potential Peer List
	0.009524439	0.002617120	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	102	Potential Peer List
	0.010436494	0.000912055	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	134	Key Server, Live Peer List, Distributed SAK
	6 0.011732499	0.001296005	52:54:00:5c:f9:b1	01:80:c2:00:00:03	EAPOL-MKA	178	Key Server, Live Peer List, MACsec SAK Use, Distributed SAK
	0.017284492	0.005551993	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	146	Live Peer List, MACsec SAK Use
	3 0.023570478	0.006285986	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	146	Live Peer List, MACsec SAK Use
	0.025617745	0.002047267	52:54:00:aa:62:b6	01:80:c2:00:00:03	EAPOL-MKA	146	Live Peer List, MACsec SAK Use

See: Dr. Lars Völker, "Starting up MACsec for Automotive Ethernet", VDI Conference Cyber Security for Vehicles, Jun 2021.

Automotive Hardware: Technica Automotive MKA implementation:

Our Automotive demos takes from PHY linkup to MACsec ready:

• ~18ms including configuration of MACsec hardware.

AVAILABILITY.

Semiconductors:

- We have shown MACsec running on samples of two different vendors.
- Multiple vendors and chips for different speeds announced.

Software:

- MACsec supported by Linux. You just need an "Automotive MKA" and a driver.
- We have created Automotive MKA code.
- AUTOSAR is working on MACsec integration for AUTOSAR Classic.

Tools:

• We are working on Tools, Test Suites, etc.

Estimation: First SOPs in 2024 – 2026 probable.

Chapter 03. Does MACsec solve all problems?

• MACsec vs End-to-End Security.

• Complementary solutions.

MACSEC VS. END-TO-END SECURITY.

Unprotected in Ethernet Switches?

- Inside the Ethernet Switch communication is unprotected.
- As before: Secure configuration of Ethernet Switches is a must!
- Attacking the Switch itself seems unfeasible since all silicon.

No "End-to-End Security" with MACsec?

- "But MACsec cannot protect until the application".
 - IPsec, TLS, SecOC do not either, if you examine implementations!
- "But MACsec does not protect the "host identity".
 - MACsec need to combined with complementary solutions!

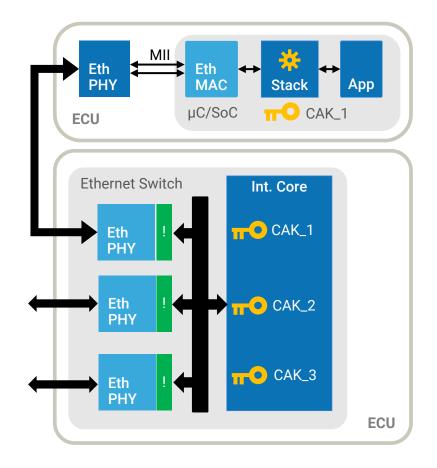
COMPLEMENTARY SOLUTIONS (1).

Address Filtering on Switches

- Since switch ports are authenticated, strong address and VLAN filtering (layer 2 and 3) is possible and highly recommended.
- This stops address spoofing and unauthorized VLAN access.
- \rightarrow Similar security as with IPsec and TLS/DTLS is achieved.

In addition, Security on Ethernet Switches in greatly improved:

- Ports are blocked until MKA authentication successful.
- Ports only accept protected traffic.

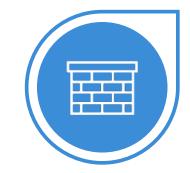

MACsec placement

2022-04-

28

• Port filters can be more specific (think ECU options).

MACsec Key Agreement (MKA)



COMPLEMENTARY SOLUTIONS (2).

Packet Filters and ACLs:

- Without spoofing many solution get easier.
- Packet filters can trust that a source IP is not modified.
 - Stronger filtering on ECUs possible.
 - With multiple IPs (e.g., virtualization), ECUs need to also filter outgoing.
- Simple ACLs can now achieve high Security for SOME/IP.
 - No need for "costly" application protocol specific security.
 - Updating and managing ACL policy needs to be solved.

Don't forget: Use VLANs for segmentation!

SUMMARY.

Maximum Protection:

• MACsec allows protection of basically all Ethernet frames.

Ready:

- MACsec and MKA can be made "Automotive".
- Chips, Software, Tools, and Testing are worked on.

Thank you for your attention!

Dr. Lars Völker

Technical Fellow Lars.Voelker@technica-engineering.de +49-175-1140982

Technica Engineering GmbH Leopoldstraße 236 80807 Munich Germany

https://www.linkedin.com/in/lars-voelker/